

TEMU 3 AND TEMU 4

HIGH PERFORMANCE GR740 VIRTUAL PLATFORM DR. MATTIAS HOLM

Introduction

- TEMU 2:
 - Released in 2015.
 - Latest release: 2.3.5 in 2022
 - Features:
 - Supports ARMv7, PowerPC 32 and SPARCv8
 - Multicore emulation (on a single thread, round-robin)
 - ERC32, LEON2, LEON3, LEON4 (with peripherals)
 - APIs for I/O bus modelling (UART, Ethernet, CAN etc)
 - Bus models can often dump PCAP files for analysis in Wireshark
 - Lots of models of GRLIB peripherals
 - Memory SEU, MEU injection
 - Fully deterministic
 - Example usage with external customers and internally:
 - Real-time GR712RC simulator (both cores)
 - HIL (StarDundee adapter for SpW (Terma IPR), CAN bus bridge to USB-CAN adapter)
 - SVFs
 - OBSW development
 - ESTEC EagleEye SVF

TEMU 3

- TEMU 3 released 2022-11-11
- Several improvements in system:
 - New command line recursive decent parser replacing libedit tokenizer
 - Expressions
 - Custom commands
 - If statements
 - Etc
 - Performance:
 - New instruction set simulator interpreter mechanism (50 % performance gain)
 - Binary translator (100 % performance gain (on-top of TEMU3 interpreter))
 - Capable of emulating a single GR740 LEON4 core in real-time
 - Models and Buses
 - P2020 (E500 PPC core with vector instruction set, peripherals)
 - PCIe peripheral bus model
 - GR740 (GRIOMMU, IRQAMP, GRSPW2, SPWROUTER, GR1553B, GRCAN)
 - Other:
 - Multi-endian bus modelling (e.g. processor (big), PCIe (little))
 - SMP2 runtime library (run SMP models inside of TEMU)

TEMU 4 and Onward

- Under development:
 - Adds parallel multi-core scheduler (prototype exists that works)
 - Will run quad-core GR740 in real-time (given enough host cores)
 - More models
 - SystemC runtime library (run SystemC models inside of TEMU, prototype exist that works)
 - RISC-V support?
 - Improved software debugging support
 - E.g. better scripting, automatic context switching, etc.
 - Likely higher OS requirement (moving to C++20)

TEMU 3: Performance

- Currently almost 100% faster than interpreter
- Some benchmarks run significantly faster
- Data from:
 - MacBook Pro (2019)
 - 2.3 GHz 8-core Intel Core i9
 - 32 GiB 2667 MHz DDR4 RAM

■ Interpreted ■ Translated

TEMU 4: Preliminary Performance

- Test Case
 - 4 simulated cores
 - Some cores idle (see x-axis)
 - A certain fraction of idle time
 - 1 or 2 threads
- Graph shows normalised time, smaller is better
- Close to theoretical speedup (without synchronisation overhead)
- Note, setting CPU affinity per thread will be important for end user.

0 ______ 2 CPUs 3 CPUs 4 CPUs

0.25

TEMU Virtual Platforms

- TEMU is pre-configured with the following SPARC platforms:
 - ERC32
 - AT697F (LEON2)
 - UT699 (LEON3)
 - UT700 (LEON3)
 - GR712RC (2xLEON3)
 - GR740 (4xLEON4)
- Complete systems simulated, including buses: serial, GPIO, 1553, Ethernet, SpW, CAN, etc.
- API for buses is straight forward => easy to implement remote terminal models.
- User can add to, remove from and re-configure the built-in configurations, or create a new one.
 - Want more RAM, change the RAM model allocation.
 - Want to add an extra UART, just create and map to memory in two lines.
 - Want to change the clock frequency, go ahead.

TEMU Models

- The following buses are modelled in TEMU out of the box:
 - AMBA (with PNP)
 - CAN
 - Ethernet
 - MIL-STD-1553
 - PCle
 - Serial
 - Signal (e.g. used for GPIO)
 - SpaceWire
 - SPI

User can assemble their own virtual platform configuration from bundled models.

For an up-to-date list see: https://temu.terma.com/features.html

- SPARC Related Models
 - MEC (ERC32)
 - LEON2 on-chip devices
 - GRLIB
 - AHBCTRL
 - AHBSTAT
 - APBCTRL
 - APBUART
 - B1553BRM
 - CAN_OC
 - CLKGATE
 - FTMCTRL
 - GPTIMER
 - GR1553B
 - GRCAN
 - GRETH
 - GRETH_GBIT
 - GRGPIO
 - GRIOMMU
 - GRSPW1
 - GRSPW2
 - IRQAMP
 - IRQMP
 - L2CC
 - MCTRL
 - SPWROUTER

Software Debugging

- Built-in GDB RSP server.
 - Each simulated core mapped to a GDB thread
 - Non-intrusive
- Built-in assembler level debugger
- Basic DWARF / source level debugging support (breakpoints by lines, function names etc), with multiple contexts
- Focused on command line to improve programmer productivity when debugging interactively at source level
- Debug multiple contexts/applications at the same time:
 - Boot Software
 - OS kernel
 - Applications
- Other features can be added if requested

temu> exec gr740.temu

```
temu> ctxt0.pvar 'a'
a = 5
temu> ctxt0.list-variables
param: a : int
param: b : int
variable: c : int
```

Control and Integration

- User Interaction with TEMU
 - Command line, using the "TEMU scripting language"
 - C-API for writing models and controlling TEMU
 - Publish models and their state (snapshots will work out of the box)
 - GDB RSP
- Embedding
 - TEMU is designed for embedding in other programs using the C-API
 - Main command line driver is just a program linking to the TEMU runtime libraries
 - Example:
 - Embedding in an SMP based simulator (SimSat, etc)

- I/O models:
 - Implement TEMU model handling the memory transactions, and forward calls to external models (e.g. SMP models).

QUESTIONS

Please Visit:

- <u>https://tgss.terma.com/</u>
- <u>https://temu.terma.com/</u>

Contact:

- Sales: Mr. Roger Patrick <<u>rmp@terma.com</u>>
- Technical: Dr. Mattias Holm <<u>maho@terma.com</u>>

Find us at <u>www.terma.com</u> and

