
GR740 User Day

13th December 2022

Michael Ryan, CTO, O.C.E.Technology Ltd

a whitebox RTOS for
multicore embedded systems

2

Embedded System Characteristics (1)
• Fixed Code Base Software not added during system life

=> can use physical addresses, RTOS doesn’t need page tables etc.

• Code must be robust So an RTOS design should…
=> ensure certain failure modes are impossible

- e.g. unbounded priority inversion, …
=> allow behaviour policing by the application (white box)

- performance data recorded and checkable at any time
=> automatically check for problems

- e.g. stack overrun, missed deadlines…
=> automatically trigger application problem handlers
=> provide calls to deal with problems

- e.g. kill task, disable task, disable a CPU, …

OCEOSmp on GR-CPCI-GR740

about:blank
about:blank

3

Embedded System Characteristics (2)
• But things can go wrong So an RTOS design must provide

=> Fault Anticipation, Detection, Isolation, Reporting, Recovery
- make it easy for the application to police the system:

min time between task start requests
max execution times, deadline misses
max pre-emptions, max stack usage

- make it easy to exploit redundancy:
run same task on many CPUs, check results agree

- automatic checks of key components
memory area sentinels, stack space

- automatic logging of anomalies
- triggers for user defined problem handler functions
- kill tasks, disable tasks, disable CPU cores,

restart CPU core, …

OCEOSmp on GR-VPX-GR740

about:blank
about:blank

4

OCEOSmp: For Multi-Core Embedded Systems

• Based on ‘Stack Resource Policy’ (Baker 1991)
=> single system stack per CPU (not stack per task)

• Deterministic
=> behaviour predictable
=> memory statically allocated
=> timing overheads minimized and quantifiable

• Schedulability analysis
=> simpler to perform

• Application task timing recorded for analysis
=> maximum execution times, maximum times to completion,…
=> missed deadlines trigger application defined action

• Timed actions independent of scheduling
=> output at specific time, task start request at specific time

OCEOSmp on GR712

about:blank
about:blank

5

OCEOSmp: Multi-Core
• Exclude

=> exclude some cores from OCEOSmp use, e.g. for use by Linux

• Reserve
=> reserve cores for higher priority OCEOSmp tasks

• Symmetric
=> after start-up, all cores are equal

• Work Distribution
=> task execution instances distributed evenly across cores
=> unless task restricted to a particular core

• Control
=> take core out of use, put core back in use

OCEOS on GR716

about:blank
about:blank

6

OCEOSmp: RTOS (1)

• Fixed priority
=> task priorities fixed based on task importance

• Pre-emption threshold
=> pre-emption only by tasks with higher priority than threshold

• Multiple execution instances
=> multiple same task ‘jobs’ can be in execution at same time typically

using different data

• Timed actions independent of scheduling
=> data output at specific time
=> task start request at specific time

OCEOSmp for RISC-V

about:blank
about:blank

7

OCEOSmp: RTOS (2)

• Mutexes
=> unbounded priority inversion cannot occur
=> deadlock warning, cannot occur if single core

• Read-Write mutexes
=> allow multiple simultaneous reads of protected area when not

being written, prevent writing if being read

• Counting semaphores
=> allow wait with timeout

• Data queues
=> allow read with timeout

Solar array drive

about:blank
about:blank

8

OCEOSmp: RTOS (3)

• System time
=> in microseconds, 64 bit

• Context switch timing
=> context switching shared across all cores
=> context switch time minimized

• Interrupts
=> interrupt disabled timing is minimized
=> high priority timer interrupt reserved for timed actions

• Some numbers
Up to 255 cores, 255 tasks, 15*255 execution instances (jobs),
63 mutexes, 63 read-write mutexes, 63 semaphores,
63 data queues, memory < 20KiB

GNSS embedded system using OCEOS

about:blank
about:blank

9

Single

stack
Single

stackDynamic data

Area

Fixed data

Area

Startup

Initialization

Application

Configuration

Initial CPU select

OCEOSmp config

Create tasks etc.

OCEOSmp validate

Log & system

state Area

Fixed priority premptive scheduler

Mutexes Timed ActionsData QueuesSemaphores

Fault

handling

Task 1 Task 2 Task nTask n-1

 oceos.png

C

P

U

1

C

P

U

2

C

P

U

n

Single

stack

All CPUs

OCEOSmp

Start

Scheduling

about:blank
about:blank

10

OCEOSmp: RTOS (4) – USING IT
• Library - components not used not linked into the executable

• Servant not Master – started by application main()

• Step 1 : Create application configuration, pass to oceos_init()
what cores to use, what stack space, log entries
how many tasks, jobs per task, timed actions,
how many mutexes, semaphores, data queues

• Step 2: Create corresponding tasks, mutexes, etc.
using oceos_task_create() etc.

• Step 3: Use oceos_init_finish() to complete fixed data and checksum

• Step 4: Pass fixed data and initial task (if any) to oceos_start()
dynamic data area is set up
multi-core scheduling begins

OCEOS for automobiles

about:blank
about:blank

11

Debug support - DMON

about:blank
about:blank

Current Status
• OCEOS (single core)

• SPARC and ARM versions complete
(with additional support for GR716 microcontroller)
ESA Flight Level B qualification ready

• OCEOSmp (multicore)
• Multicore SPARC & RISC-V scheduling in initial test, ARM later

• Example test results using SPARC quad core Gaisler GR740:
• 1001 task starts even distribution: Per CPU 251,250,250,250

• 4096 sample FFT (one task, four jobs in parallel): Speedup factor 3.7

• Availability
• OCEOS - single-core development kit on-sale

• OCEOSmp - multicore beta evaluations available soon

OCEOS task usage & debug screen

about:blank
about:blank

Finally

• Thanks to ESA for their support

• Thank you for listening

• Any Questions?

michael.ryan@ocetechnology.com www.ocetechnology.com

about:blank
about:blank

